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ABSTRACT

In many applications, tasks can be delegated to intelligent agents.
In order to carry out a task, an agent should reason about what types
of resources the task requires. However, determining the right re-
source types requires extensive expertise and domain knowledge.
In this paper, we propose means to automate the selection of re-
source types that are required to fulfil tasks. Our approach com-
bines ontological reasoning and logic programming for a fl xible
matchmaking of resources to tasks. Using the proposed approach,
intelligent agents can autonomously reason about the resources and
tasks in various real-life settings. Using a case-study, we describe
and evaluate how agents can use the proposed approach to promote
resource sharing. Our evaluations show that the proposed approach
is efficien and very useful for multi-agent systems.

Categories and Subject Descriptors
[.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms

Design, Experimentation

Keywords

Knowledge Representation, Semantic Matchmaking, Agents

1. INTRODUCTION

Tasks are crucial activities for organizations. The success of
many organizations may depend on the appropriate execution of
their tasks. In many scenarios, tasks are monitored, managed, or
executed by intelligent agents (i.e., task agents) [7]. Tasks can be
simple (i.e., atomic) or composite (i.e., composed of various sub-
tasks). Their success depends on various factors; one of them is
the appropriate selection of resources. Determining what types of
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resources should be used to accomplish a specific task requires ex-
tensive domain knowledge and expertise. However, tools for fully
automated determination of necessary resource types are important
for the following reasons:

1. Availability of expertise: Some organizations may not have
human experts to determine the required types of resources
for their tasks.

. Scalability: As the number and complexity of tasks increase,
the process of manually determining types of resources be-
comes infeasible and highly error-prone.

3. Dynamicity: The types of resources required by a task may
change depending on outputs of other tasks and unpredictable
environmental factors. Therefore, it may not be possible to
precisely determine what types of resources should be used
for a task, in advance; instead, at run-time, the agent respon-
sible for the task should consider the existing conditions and
reason about the necessary resource types, as in Example 1.

. Intolerance to delays: As demonstrated in Example 1, in
some settings, it is critical to determine necessary resources
for tasks in a timely fashion. In these settings, keeping hu-
man experts always “in the loop” may lead to unacceptable
delays and failures in the tasks. However, fully automated
determination of the required resource types enables task agents
to act autonomously without human intervention.

EXAMPLE 1. Consider a poor country where there is an ongo-
ing civil war. The civilians that have lost their homes are sheltered
in a civil camp. The Red Cross aims to send medicines, medical
equipment and doctors to the camp. However, there is a possibil-
ity of being attacked by armed groups on the road. In this context,
it is critical to conduct a surveillance task that monitors the road
to the camp and informs the authorities about the possible threats.
For this purpose, an agent responsible for the “surveillance” task
decides to deploy five Unmanned Aerial Vehicles (UAVs) with op-
tical cameras, i.e., five Global Hawks with EOCameras. Half-way
through the “surveillance” task, part of the road between moun-
tains has been covered by fog. Two UAVs responsible for moni-
toring this part immediately become useless, because the attached
optical sensors cannot be used to sense activities under fog. In or-
der to successfully complete the task, new UAVs with the necessary
equipment should be allocated immediately. Using the new con-
straints, the task agent decides to deploy Global Hawks equipped
with SAR, where SAR is a radar sensor that can be used to detect
activities under fog. The agent immediately allocates the nearest
available Global Hawks with SAR sensors to resume the task in the

foggy area.

In summary, without enabling agents to reason about resources
for tasks, the human experts should always be “in the loop” dur-
ing the specificatio and execution of tasks. Especially in dynamic
environments, task agents should be intensively supported by hu-
man experts. This hinders autonomy of the agents and may result
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Figure 1: A composite task example for monitoring effects of
global warming (composite tasks are represented using rectan-
gles while atomic tasks are represented using ellipses).
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in delays, which may lead to severe failures. An appropriate ap-
proach for reasoning about tasks and resources should address the
following issues.

1. Representation of Domain Knowledge: The domain knowl-
edge should be represented semantically using standard lan-
guages, so the knowledge created by a party can be clearly
interpreted and reused by others. This representation should
support semantic rules, because some crucial knowledge can
only be captured using rules (i.e., if an area is foggy, sen-
sors with fog penetration capability should be used to sense
activities within the area).

Flexibility: Different tasks may require different mechanisms
to match resource types to their needs. Therefore, the ap-
proach for reasoning about tasks and resources should be
fl xible enough to accommodate different matchmaking mech-
anisms for different tasks.

Expressiveness: If a matchmaking mechanism is semanti-
cally represented, it can be interpreted by various agents to
fl xibly reason about tasks and resources. However, repre-
sentation of matchmaking mechanisms may require complex
data types/structures, which cannot be expressed by current
languages for Semantic Web.

Considering these issues, in this paper, we propose a fl xible
Semantic Web approach for intelligent agents to reason about the
requirements of tasks and capabilities of resources. As a result of
this reasoning process, the agents can determine what types of re-
sources they should use to achieve a specifi task.

The rest of the paper is organized as follows. In Section 2, using
an example, we overview a multi-agent system (MAS), in which
tasks are delegated to agents that need to reason about the resources
to achieve their tasks. Section 3 describes how tasks and resources
are described semantically using ontologies. Section 4 proposes
our approach for fl xibly determining resource types for tasks using
ontological reasoning and logic programming. Section 5 evaluates
the proposed approach and illustrates, with a case-study, how the
proposed approach fit in agent-based solutions to real-life prob-
lems. Lastly, Section 6 discusses the proposed approach with ref-
erences to the literature.

2. DELEGATION OF TASKS TO AGENTS

We envisage a multi-agent system where each task is represented
by a software agent, named “task agent”. The task agent is respon-
sible for the task. If a task is composed of subtasks, then that task’s
agent delegates those subtasks to other task agents. If a task agent
represents an atomic task, then the agent is only responsible for
the reasoning about the required types of resources for the task.
Once the required types of resources are determined by the agent,
instances of these resources are allocated to execute the task.
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Resource determination and allocation for each atomic task is
managed by the agent of that task. Hence, for a composite task,
overall resource determination and allocation is achieved in a de-
centralized manner by the agents representing atomic tasks within
the composite task. Dependencies between tasks are managed by
the task agents. While some dependencies (e.g., input-output re-
lationships) are explicit, some others are not. For example, a task
T'x needs resources of type either R4 or Rp; on the other hand,
another task 7y can only use resources of type R4. Unfortunately,
R 4 has only one instance, which is not shareable between tasks. In
this case, if T'x allocates instances of R4 instead of those of Rp,
Ty cannot be executed because of the lack of resources. These
interdependencies should also be considered by agents during the
allocation of resource instances.

Using the composite task example of Figure 1, Figure 2 illus-
trates how tasks are delegated to agents and how these agents inter-
act in our framework. We can summarize the scenario in Figure 2
as follows:

1. The semantic description of Global Warming Monitoring (GWM)

task is fed into the system.

. The GWM task is delegated to a task agent (GWM agent),
which initiates and coordinates subtasks of the GWM task
using the task description.

. The GWM agent delegates the atomic task Monitoring Ice-
bergs (MI) to a task agent (MI agent). The MI agent reasons
about the required resource types using the description of the
MI task.

. After determining the required types of resources, the MI
agent allocates resources required to achieve the task.

. During the execution of MI task, a melting iceberg is detected
and the GWM agent is informed by the MI agent.

. As define in the description of GWM task, the GWM agent
initiates Detect Changes in Ocean (DCO) task by delegat-
ing it to a new task agent (DCO agent). The DCO task
is composed of three parallel atomic tasks. Therefore, the
DCO agent delegates those tasks to three task agents, which
are responsible of the atomic tasks:  Monitoring Thermal
Changes, Monitoring Ocean Animals and Monitoring Seis-
mic Activities respectively. These agents autonomously rea-
son about the atomic tasks they represent and determine the
most useful resource types. Lastly, they allocate instances of
the determined resource types.

The scenario in Figure 2 reveals two important challenges. The
firs one is the representation of knowledge about the tasks and
resources so that agents can reason about them. The reasoning
at a task level involves the interpretation of a task’s fl w (e.g.,
which subtasks should be activated) and determination of required
types of resources. Semantic Web technologies provide knowledge
representation languages and tools to support task-level reasoning.
The second challenge is the allocation of specifi resources for an
atomic task, once the types of necessary resources are determined
by its agent through reasoning. In this paper, we integrate Semantic
Web technologies with multi-agent systems in a novel way to han-
dle the firs challenge. The second challenge has been extensively
studied in the MAS community [3] and is not within the scope of
this paper. The next two sections give details about our approach
for the representation of tasks and determination of required re-
source types for a specifi task.
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Figure 2: A partial scenario for Global Warming Monitoring task of Figure 1.

3. KNOWLEDGE REPRESENTATION

In this section, firs we propose means to semantically represent
tasks using OWL-DL [11] and domain ontologies. Then, we for-
mally describe the relationships between tasks and resources.

3.1 Semantic Representation of Tasks

We represent a composite task as a workfl w composed of a set
of subtasks with temporal and logical relationships between them
(e.g., sequence, if-then-else). In order to provide a formal ground-
ing to our model of semantic task workfl ws, we build upon the
OWL-S process ontology [8] combined with an OWL-based do-
main ontology that captures properties of tasks within a specifi
domain. Therefore, task agents can easily understand, interpret
and reason about the task representations. The OWL-S process on-
tology is proposed to describe Web Service processes as semantic
workfl ws [8]. OWL-S define three categories of process: simple,
atomic and composite. Composite processes are described using
atomic or other composite processes using temporal and logical re-
lationships (e.g., sequence, split, if-then-else and so on). In our
context, atomic tasks are considered as atomic processes. Simi-
larly, composite tasks are considered composite processes that are
composed of other processes. Thus, we can combine the OWL-
S process ontology with domain specifi ontologies in an intuitive
manner to describe tasks recursively with formal semantics.

Our approach is fl xible enough to work with different domain
ontologies. However, to ground our presentation, we address the
Intelligence, Surveillance, Target Acquisition and Reconnaissance
(ISTAR) domain' in the rest of the paper. In order to describe tasks
in this domain, an ISTAR ontology is combined with the OWL-
S process ontology as shown in Figure 3. The ISTAR ontology
describes the relationships between resources and tasks requiring
those resources, while the OWL-S process ontology describes the
relationships between tasks. More specificall , the ISTAR ontol-
ogy states that each task may require capabilities to achieve its ob-
jectives and resources may provide various capabilities. The Plat-
Jform and System concepts are both resources, but systems can be
attached to platforms. Sensors are regarded in the ontology as a
specialization of systems. We note that the ISTAR ontology shown
in Figure 3 contains only core concepts and relationships. How-

"http://en.wikipedia.org/wiki/ISTAR

467

Ae

is

onstant_Survailance IMINT_Capability
hasOperationalReguirement ‘ haslIntelligenceRequirement
Road Surveillance

Figure 4: Abstract task example.

iSA-

onstant_Survailance IMINT_Capability
hasO i ‘ i

Road Surveillance

instance of

road_surveillance_inst

hasintelligenceRéauirement
hasOj
@ Figh Altitude
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ever, it is easily extended by adding other OWL ontologies to fur-
ther elaborate on different concepts.

Each task may have requirements, which are used to select the
most appropriate resources for them. The requirements of a com-
posite task are inherited by its subtasks. Requirements can be as-
sociated with the task in at least three ways. First, the task can be
define abstractly in an ontology together with its default require-
ments. Second, new requirements can be explicitly placed onto
the task during design time. Third, constraints define within the
context of the task may add new requirements to the task, or mod-
ify its existing requirements. Figure 4 shows how an atomic task
Road Surveillance may be defined This task has one operational
requirement’, namely Constant Surveillance, and one intelligence
requirement, namely /magery Intelligence (IMINT) capability. If
we assume that a road surveillance task is an instance of this task,
then it inherits these two requirements.

Let us suppose that the road surveillance task to be executed in
a mountainous area during the winter. The constraints imposed on
the road surveillance task affect its requirements as follows. First,

2The object properties hasOperationalRequirement and hasIntelli-
genceRequirement are define as sub-properties of hasRequirement
in the ISTAR ontology.
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Figure 3: Combination of OWL-S’s process ontology and ISTAR ontology.

a high altitude requirement is added, because this task will be exe-
cuted in a mountainous area. Second, because the road surveillance
will be carried out during the winter (when snow, rain and fog are
highly probable and imagery vision can be badly affected), Radar
Intelligence (RADINT) is added to the requirements of the task.
Figure 5 shows the resulting road surveillance task instance along
with its full set of requirements.

As explained above, constraints may affect the requirements of a
task. For this purpose, in the domain ontology, we have to use se-
mantic rules [1] to represent the relationships between constraints
(e.g., terrain and weather conditions) and requirements (e.g., high
altitude and radar intelligence). These rules capture the crucial do-
main knowledge critical to the overall tasks.

3.2 Resources Required by Tasks

Allocating resources to a task corresponds to allocating resources
to its subtasks. This leads to the argument that allocating resources
for a task amounts to allocating resources to all of the atomic tasks
within the task. Therefore, henceforth we mainly describe our ap-
proach using atomic tasks.

Each atomic task may require different types of resources, be-
cause each atomic task may have different requirements. More-
over, some atomic tasks may have requirements that cannot be met
by a single resource type. In those cases, different resource types
should be allocated together to meet the requirements of an atomic
task. We use the term Deployable Configuration in order to refer
to the set of resource types that an atomic task needs. Deployable
configuration are define formally in a domain-independent way
as follows. First, we make use of three finit and non-empty sets:

L) tn}
e Resource capabilities C' = {ci, . ..

e Resource types T = {t1, ..
;Cm}
e Task requirements R = {r1,...,mp}
Sample sets for ISTAR domain are
o T = {GlobalHawk, EOCamera, Reaper, DayLightTV }
® C = {LargeAreaCoverage, Night Vision, HighResImage}
o R = {HighAltitude, IMINT}

A set of types T" C T is formally related via the function s to
a set of capabilities C' C C, that is, & : 27— 2. This for-
malization aims at capturing dependencies between resource types
while providing certain capabilities — when resource types are put
together, they provide combined capabilities, as in, for instance,

{GlobalHawk, EOCamera} provides { LargeAreaCoverage, High-
ResImage} but { GlobalHawk } only offers an empty set of capabil-
ities. Second, a set of requirements R’ C R is formally related via
the function o to a set of sets of capabilities {Cp, ..., Cq}, C; C

C,0 < i < g, thatis, o : 2f 226. This formalization aims
at capturing another important aspect — a set of requirements can
be met by various different capabilities put together. An example
of this is how requirement {IMINT} can be met differently by
{NightVision} or { HighResImage}.

Lastly, a deployable configuration is a set of resource types pro-
viding the necessary (and sufficient capabilities for a set of require-
ments. More formally, we have:

DEFINITION 1. Given a set of requirements R' C R with asso-
ciated capability sets o (R') = {Cy, . .., C}}, a deployable config-
uration DC C T is a set of types such that, for at least one C;,0 <
i < q, C; € k(DC) which means that each capability ¢ € C;
is semantically subsumed by a capability ¢ € k(DC). More-
over, for any proper subset of a deployable configuration DC; C
DC,DC; # DC, there is no C;,0 < i < q, such that C; C
H(DC]‘). I

The definitio above forges the necessary (firs part of the defi
nition) and sufficient conditions (second part of the definition for
deployable configurations These must be minimal: only those es-
sential types should be in the configuratio and nothing else.

As illustrated in Example 2 below, there may be different ways
of executing an atomic task using different types of resources. In
the definitio of deployable configurations we keep the functions
k and o as abstract as possible, as they should be define differ-
ently for distinct domains. This means that the mechanism used to
determine deployable configuration of an atomic task may change
for different tasks. In some settings, each resource type may be in-
dependent and provide specifi capabilities. In other settings, how-
ever, resource types may depend on one another to provide capabil-
ities. Example 3 and 4 below demonstrate how the determination
of deployable platforms may vary in distinct settings.

EXAMPLE 2. Assume that an atomic task has two deployable
configurations: [GlobalHawk, EOCamera] and [Reaper, Daylight
TV], where GlobalHawk and Reaper are autonomous UAVs while
EOCamera and DaylightTV are sensor types. This means that there
are two different ways of executing this task. The first way is to
use only the resource types GlobalHawk and EOCamera. Alterna-
tively, another way is to use only the resource types Reaper and
DaylightTV. The task may select one of these configurations before
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allocating resources. The selection may depend on the utility of
these configurations for the task.

EXAMPLE 3. In stationary wireless sensor networks, the ca-
pabilities of a sensor type may not depend on other sensor types.
For instance, a thermal sensor does not depend on other types of
sensors to sense thermal activity within its range. In this setting,
capabilities provided by sensor types are additive.

EXAMPLE 4. In mobile sensor networks, sensors are attached
to platforms such as UAVs, Autonomous Underwater Vehicles (AUVs),
autonomous robots and so on. Hence, they can move within the
region of interest and provide the required sensing information.
Platforms have a pre-defined number of slots onto which partic-
ular kinds of sensors can be attached. There are domain-specific
constraints that determine what platforms can be used with which
sensors to provide a specific capability. For instance, a surveillance
task may require imagery intelligence. This requirement can be
met by sensors that provide the imagery intelligence, however the
task may also need platforms to carry and support those sensors.
Let us assume we have only two types of platforms that provides
constance surveillance capability: GlobalHawk and Reaper. Ad-
ditionally, we have only three types of sensors with imagery intel-
ligence capability: EOCamera, IRCamera, and DaylightTV. Glob-
alHawk can only carry and support sensor types EOCamera and
IRCamera, while Reaper can only mount DaylightTV. As a result,
we can compose only three different deployable configurations for
the task: [GlobalHawk, EOCameral], [GlobalHawk, IRCamera],
and [Reaper, DaylightTV].

Determination of deployable configuration for a specifi task
requires extensive domain knowledge and expertise as the previ-
ous examples illustrate. In the following section, we propose to
combine ontological reasoning and logic programming to provide a
fl xible solution for the computation of deployable configurations

4. ONTOLOGICAL LOGIC PROGRAMMING

Determination of deployable configuration for a specifi task
can be modeled as a semantic matchmaking problem where sets
of resource types are matched to tasks. During matchmaking, we
may use ontological reasoning to determine the best combinations
of resource types that provide capabilities required by the tasks.

Examples 3 and 4 show that different tasks may require different
mechanisms for computing deployable configurations Hence, we
must be able to use different matchmaking mechanisms in order to
compute deployable configuration for different tasks. That is, as-
suming that a generic matchmaking mechanism is able to handle
all tasks is not realistic and can be very restrictive in many settings.
Instead, in this section, we propose to enable different tasks to use
different matchmaking mechanisms. For this purpose, we propose
Ontological Logic Programming (OLP), which is a novel combi-
nation of ontological reasoning and logic programming. Different
matchmaking mechanisms are described using OLP and associated
with an ontology as an instance of MatchmakingMechanism con-
cept. In order to associate different tasks with different match-
making mechanisms, an object property hasMatchmakingMecha-
nism is created, whose domain is the 7ask concept while its range
is the MatchmakingMechanism concept. In order to fin the most
adequate resource types for a specifi task, our matchmaking algo-
rithm simply gets the matchmaking mechanism related to the task
and execute the associated OLP program.

Figure 6 shows the OLP stack used for matchmaking. At the
base of the stack, we have domain ontologies in OWL [11]. Some
rules are associated with these ontologies using SWRL [1]. Above
the ontologies and the rules, we have a Description Logic (DL) [2]
reasoner such as Pellet [10]. This reasoner is used to infer facts
and relationships from the ontologies and rules. Above the rea-
soner, we have a Logic Programming (LP) interpreter. Our choice
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Figure 6: OLP Stack.

of LP language is Prolog and in our implementation, we use a pure
Java-based Prolog interpreter [9]. At the top of the OLP stack, we
have our meta-matchmaker. The meta-matchmaker is responsible
for retrieving the right matchmaking mechanism for a task from the
ontology, and then it uses an appropriate Prolog meta-interpreter to
interpret the related OLP program. The meta-interpreter uses the
DL reasoner during an execution and returns the matchmaking re-
sults to the meta-matchmaker.

Figure 7 shows a simplifie version of the Prolog meta-interpreter
used to interpret OLP programs through the eval predicate, while
Figure 8 shows a simple matchmaking mechanism written in OLP.
The code in Figure 8 is a Prolog program, where concept and prop-
erties from the underlying ontologies are referenced directly. In
order to differentiate between ontological and other predicates, we
use name-space prefi es separated from the predicate name by a
colon. For example, we can directly use ontological predicate is-
tar:requireCapability in a OLP program without definin its se-
mantics in Prolog, where istar is a prefi that refers to http.//www.csd.
abdn.ac.ulk/ita/istar. The Prolog knowledge-base does not have
any information about ontological predicates, since these predi-
cates are not define in Prolog, but described separately in an on-
tology. In order to interpret an OLP program, the Prolog meta-
interpreter needs the ontological reasoning provided by the DL rea-
soner. The meta-interpreter accesses the DL reasoner through the
loadFromOntology predicate as shown in Figure 7. This predicate
is a reference to a Java method, which queries the reasoner and
loads the necessary facts into the Prolog knowledge-base.

During the interpretation of an OLP program, if a predicate in
prefix:name format is encountered, the DL reasoner below the in-
terpreter in the OLP stack is queried to get direct or inferred facts
about the predicate in the underlying ontologies. For example,
if the meta-interpreter encounters the ontological predicate istar:
requireCapability during its interpretation of an OLP program, it
queries the DL reasoner. The requireCapability predicate is de-
fine in ISTAR ontology using SWRL rules, so the reasoner in-
terprets these rules to derive facts. Then the facts returned by the
reasoner are loaded into the Prolog knowledge-base and interpre-
tation of the OLP program is resumed. Therefore, we can directly
use the concepts and properties from ontologies while writing logic
programs and the facts are imported from the ontology through a
reasoner when necessary. Caching mechanisms are used to im-
prove performance. OLP enables us to combine the advantages of
logic programming (e.g., complex data types/structures, negation
by failure and so on) and ontological reasoning. Moreover, logic
programming aspect enables automated creation of explanations,
which provide transparency and rationales for utility measures.

The OLP program in Figure 8 is a simple matchmaking mecha-
nism, where the gerConfigurations predicate computes deployable
configuration for a specifi task. The program implements an in-
cremental algorithm, which starts with an empty set and iteratively
attempts to add new resource types to this set if the resource type
provides a required capability, which is not provided by the re-
source types in the current set. The algorithm assumes that resource



eval (not(G))
eval ((G1,G2))
eval ((G1;G2))

not (eval (G)) .
eval (G1),eval (G2) .
eval (G1l) jeval (G2) .

eval((0:G)) - ontology(0,G) .

eval (G) - not (complex(G)), (clause(G,B), eval(B);
not (clause(G,_)),call(G)).

complex (G) - G=not(_) ; G=(_;_) G= 5 G=( ).

_ (.,
ontology (0,G) loadFromOntology (0,G),call (0:G) .

Figure 7: Simplified Prolog meta-interpretter for OLP.

getConfigurations (Task, Sensors) : -
extendSolution (Task, [], Sensors).
extendSolution (T, Prev,Next) : -
requireSensor (T, Prev,X),
A=[X|Prev],
extendSolution (T, A, Next) .
extendSolution(T,S,S) :-
not (requireCapability (T, S,
requireSensor (T, S,X) : -
requireCapability(T,S,C),
istar:’Sensor’ (X),
istar:’provideCapability’ (X,C) .
requireCapability(T,S,C) :-
istar:’requireCapability’ (T,C),
not (provideCapability(S,C)) .
provideCapability ([Y|Tail]l,C):-
istar:’provideCapability’ (Y,C),!;
provideCapability (Tail,C) .

).

Figure 8: A matchmaking mechanism example, where a de-
ployable configuration is composed of sensor types whose capa-
bilities are additive. The predicate getConfigurations computes
deployable configurations for a specific task.

types are independent and capabilities are additive. Hence, this al-
gorithm can be used to determine deployable configuration for the
case in Example 3. In an ontology, OLP programs are associated
with instances of the Matchmaking Mechanism concept using a data
type property and tasks are associated with different matchmaking
mechanisms using hasMatchmakingMechanism object property.

Although our example in Figure 8 is simple, it is straightforward
to create sophisticated matchmaking mechanisms for the cases where
resources are co-dependent and their capabilities are not additive.
For example, the OLP program in Figure 9 computes deployable
configuration for settings such as those in Example 4. In such
settings, each sensor must be carried by an available platform that
provides all of the operational requirements of the task (e.g., con-
stant surveillance). If a sensor cannot be carried by an available
platform, there is no point in considering deployable configuration
with that sensor type. Using this knowledge, a tailored and efficien
matchmaker can be employed. This matchmaker firs identifie the
deployable platforms that meet the requirements of the task. Once
many possibilities are narrowed down by determining deployable
platforms, the sensor types that provide the intelligence capabili-
ties required by the task are determined so that those sensors can
be mounted on the deployable platforms.

S. EVALUATION

Our approach is implemented using Java and Pellet is used as an
OWL-DL reasoner. This section is composed of two parts. In the
firs part, we empirically compare the proposed approach with an
exhaustive search approach from the literature using a 2.16 GHz
Intel Core Duo PC with a 2GB RAM. Note that the proposed ap-
proach is designed as a tool for intelligent agents to reason about
tasks and resources. In the second part, we show a case-study
where task agents use the proposed reasoning methods to coop-
eratively enhance their performance by sharing their resources.
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getConfigurations (T, [P[S]) :-
deployablePlatform(T,P),
extendSolution(T,P, []1,8).
deployablePlatform(T,P) : -
istar:’Platform’ (P),
not ( (istar:’requireOperationalCapability’ (T,C),
not (istar:’provideCapability’ (P,C)))) .
extendSolution(T,P,Prev,Next) : -
requireSensor (T, P, Prev,X),
istar:’mounts’ (P,X),
A=[X|Prev],
extendSolution (T, P,A,Next) .
extendSolution(T,P,S,S) :-
not (requireCapability(T,P,S, )).
requireSensor (T,P,S,X) : -
requireCapability(T,P,S,C),
istar:’Sensor’ (X),

istar:’provideCapability’ (X,C) .
requireCapability(T,P,S,C):-
istar:’requireCapability’ (T,C

T,C),
not (provideCapability(S,C)),
not (provideCapability ([P],C)) .
provideCapability ([Y|Tail]l,C):-
istar:’provideCapability’ (Y,C),!;
provideCapability(Tail,C) .

Figure 9: A matchmaking mechanism example, where a de-
ployable configuration is composed of platform and sensor
types whose capabilities are not additive; instead sensors and
platforms are interdependent.

5.1 Computational Complexity

Gomez et al. propose a similar approach for automatically deter-
mining deployable configuration for tasks using the ISTAR ontol-
ogy and Pellet as reasoner [5]. Their work depends on a minimal
set covering algorithm. In order to determine deployable configura
tions for an atomic task, this algorithm enumerates all possible sets
of resource types so that each set has at most n members. Then,
a set is considered as a deployable configuratio of the task if it is
composed of a platform type P and set of sensor types S so that
P can mount all of the sensor types in S. This approach is im-
plemented in Java using ontological reasoning and an exhaustive
search algorithm with a limit define by n.

Given a specifi task, the output of the OLP program in Fig-
ure 9 and that of the approach proposed by Gomez et al. should be
the same because they are using the same definitio of deployable
configurations However, the proposed algorithm of Figure 9 is
based on the idea that the search space can be significantl reduced
using domain knowledge (i.e, dependencies between sensors and
platforms; not every types of sensors can be used with a specifi
type platform). Using this principle, at each iteration, it rules out
many combinations and significantl reduces the time required to
compute deployable configurations

To confir our assertions, we have implemented the exhaustive
search algorithm in Java and empirically compared it and our OLP-
based algorithm in Figure 9 in terms of time consumption. Our
results are demonstrated in Figure 10, where the x-axis is the maxi-
mum number of items in deployable configuration and y-axis is the
average time consumed by each approach to fin all of the deploy-
able configuration of an atomic task. When the maximum size of
deployable configuration is lower than four, the exhaustive search
algorithm is faster then our approach. This performance difference
is originated from the overhead of using OLP stack to interpret the
logic program in Figure 9. However, when the maximum size of
deployable configuration is greater than three, the proposed ap-
proach outperforms the exhaustive search algorithm significantly
time consumption of the exhaustive search increases exponentially
while that of the proposed approach looks mostly linear.
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Figure 10: Comparison between OLP program of Figure 9 and
exhaustive search algorithm to find deployable configurations.

5.2 Case-Study

In this paper, we combine ontological reasoning and Logic Pro-

gramming to enable fl xible matchmaking of resource types to tasks.

In this section, we illustrate how the proposed methods fi in (and
possibly improve) classical solutions for coordination, cooperation,
and competition among intelligent software agents. For this pur-
pose, we select a specifi case-study among many possible scenar-
ios. In this case-study, intelligent software agents use the proposed
methods to cooperatively determine the best deployable configu
rations to promote resource sharing among tasks, which leads to
an improvement in the number of executable tasks when available
resources are limited.

5.2.1 Method

Each task is represented by an agent as introduced in Section 2.
When an atomic task is delegated to a task agent, the agent uses
the proposed approach to compute deployable configurations Be-
fore allocating resources, the agent has to select one deployable
configuration Instead of selecting it individually, the agent selects
this deployable configuratio cooperatively as follows. First, on a
message board, the task agent publishes its desired deployable con-
figuration (DCs) together with the task information (e.g., owner
of the task, date, location, duration and so on). Then, the agent
lets other task agents vote for DCs. An agent’s vote for a spe-
cifi deployable configuratio is based on the utility of sharing the
assets of the deployable configuration Figure 11 shows votes of
a task agent for three different deployable configurations where
each deployable configuratio is composed of a platform and a set
of sensors that can be mounted by the platform. Lastly, depend-
ing on the voting results, each task agent decides on a deployable
configuratio that will be used during its executions. That is, task
agents select deployable configuration that enable them to share as
many resources as possible with others. After selecting a deploy-
able configuration the agent allocates resources accordingly and
shares these resources with the ones that vote for the deployable
configuration As a result, some voting agents do not have to allo-
cate all of the resources they need, because some of these resources
are shared with them. The sharing depends on many constraints
like policies, date/time, location, properties of resources and so on.
Details of this approach are explained in [4].

5.2.2  Experiments

We have randomly prepared a set of composite tasks as described
in Section 3. This set includes 908 atomic tasks in total. Require-
ments and constraints of each task is set so that it will have at least 4
deployable configurations Hence, tasks can choose between differ-
ent alternatives using the votes for those configurations In this sec-
tion, we show how the proposed approach enables tasks to achieve
their goals with fewer resources by promoting resource sharing.

For two atomic tasks to cooperate (that is, to share their re-
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TaskAgent 1 votes 1.0 for the DC
{Platform: Nimrod MR2; Sensors: [IRCamera, EOCamera]}
Because it meets all operational requirements and
provides [IRINTCapability, ELECTRO-OPTINTCapability]

TaskAgent 1 votes 0.66 for the DC
{Platform: I_GNAT; Sensors: [SAR, EOCamera]}
Because it meets all operational requirements and
provides [ELECTRO-OPTINTCapability], but
cannot provide [IRINTCapability]

TaskAgent 1 votes 0.33 for the DC
{Platform: Predator_A; Sensors: [SAR, TVCamera]}
Because it meets all operational requirements, but
cannot provide [IRINTCapability, ELECTRO-OPTINTCapability]

Figure 11: Some voting examples.
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sources), they should be adequate to cooperate, which means that
there should not be any reason preventing these tasks from coop-
erating. Policies or conflictin constraints may lead to inadequacy
to cooperate. This leads us to determine a parameter in our exper-
iments, namely the ratio of tasks adequate for cooperation (Rqc).
R, = 0.0 means that policies or conflictin constraints (e.g., lo-
cation and date of tasks etc.) do not allow a task to cooperate or
share its resources with other tasks in the system. On the other
hand, R,. = 1.0 means that policies and constraints are created so
that each task is adequate to cooperate or share its resources with
other tasks in the system. Note that R,. define only the adequacy
to share resources, but not the actual degree of resource sharing.
That is, if two tasks require different resources, they cannot share
their resources even though they are adequate to cooperate in terms
of their policies or constraints.

For comparison reasons, we also implement a naive approach to
select resources for the tasks. In this approach, for each task, we
individually select the best resources according to the requirements
and the constraints of the task. This approach does not consider
the cooperation or resource sharing between the tasks. Hence, each
resource is allocated to one task. Our experiments show that this
leads to 2195 different resources (908 platforms and 1287 sensors)
being allocated. Figure 12 shows the total number of required re-
sources for different values of R,., when our approach is used.
When R,. = 0.0, task agents are not adequate to cooperate, so
the performance of our approach is the same as that of the naive
approach. However, when we increase R,., our approach enables
task agents to search for possible ways of sharing their resources.
This leads to a dramatic decrease in the required number of re-
sources to carry out the tasks. For example, when R,. = 0.125,
many resources could be shared among tasks, so the number of re-
quired resources decreases to 819 (345 platform instances and 474
sensor instances).

If there are not enough resources, a task cannot be executed. In
the next step of our evaluations, we measure how our approach im-
proves the ratio of executable tasks when the number of available
resources is limited. Figure 13 demonstrates the ratio of executable
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tasks for different R, values, while the number of resources ranges
between 100 and 1000. When tasks are not adequate for cooper-
ation, only 45% of the tasks can be executed with all of the 1000
available resources (Rq. = 0.0). For higher values of R,., our ap-
proach enables all of the tasks to be executed with fewer resources.
This is expected, since our approach enable tasks to discover their
opportunities to share resources, so more tasks are executed with
fewer resources. When R,. = 0.125, the number of platform and
sensor instances required to execute all of the tasks is only 819.

6. DISCUSSION AND RELATED WORK

Fully automated reasoning mechanisms about tasks and resources
enable intelligent agents to autonomously determine the most ap-
propriate resources to achieve tasks in dynamic and time-critical
settings. In this paper, we formulate a way of semantically repre-
senting tasks. This representation enables us to describe the com-
ponents of a task in terms of their requirements and relationships.
We combined ontological reasoning and logic programming in a
simple and practical way to enable different tasks to have differ-
ent matchmaking mechanisms. Once the matchmaking mechanism
is define and placed in an ontology, a task agent can use it to
determine deployable configuration for its tasks. This fl xibility
enables intelligent agents to reason about resources differently for
different tasks and contexts. We evaluate the performance of the
proposed approach with respect to an exhaustive search approach.
Our experiments show that the proposed approach is not only fl xi-
ble but also enables efficien determination of deployable config
urations. In order to show how the proposed reasoning mecha-
nisms fi into multi-agent problems, we present a case-study where
task agents use the proposed approach to promote resource sharing
among tasks and carry out the tasks with fewer resources.

Tasks introduced in this paper can be considered as workfl ws,
whose components are described semantically using an ontology.
In the literature, there are approaches that describe workfl ws se-
mantically using an ontology [12]. However, these approaches do
not consider rules that lead to dynamic addition of new constraints
and requirements to tasks, depending on the changes in the envi-
ronment and outputs of other tasks.

Grosof et al. propose Description Logic Programs (DLP), a com-
bination of logic programs with description logic [6]. DLP relies at
the intersection of Description Logic, Horn Logic and Logic Pro-
grams. Although it is useful to create semantic rules for ontolo-
gies, it does not support important Logic Programming features
like negation as failures and procedural attachments. The proposed
OLP stack can accommodate DLP in the ontology and rule levels.

Approaches like [5] consider the dependencies between resource
types. In these approaches, instead of individual resource types, set
of resource types are matched against tasks, which may exponen-
tially increase the complexity of the matchmaking. Our approach
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does not depend on any assumption on the matchmaking mecha-
nism, instead it enables different matchmaking algorithms to be de-
fine fl xibly using the terms from domain ontologies. Hence, un-
like other approaches from the literature, our approach provides in-
telligent software agents to reason about tasks and resources with-
out having any specifi matchmaking mechanism embedded in their
architecture. In this paper, we choose the ISTAR domain to explain
the proposed approach. As a future work, we want to evaluate the
proposed approach in other domains using different scenarios. Fur-
thermore, we want to use the proposed approach to improve the
performance of resource allocation approaches in dynamic and un-
certain environments.
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